3G System ဆိုတာ Global Mobility
ဆိုတဲ႔ က်ယ္ျပန္တဲ႔ Mobile နည္းပညာတစ္ခုျဖစ္ပါျပီး Telephone, Paging,
Messaging, Internet နဲ႔ Broadband Data ေတြကို အေထာက္အပံ့ေပးပါတယ္ ..
International Telecommunication Union (ITU) က ဒီ Mobile
တတိယေျမာက္မ်ိဳးဆက္ကို စတင္ျပီး အသိအမွတ္ျပဳခဲ႔တာ ျဖစ္ပါတယ္ .. Europe
Telecommunications Standards Institute (ETSI) ကေတာ႔ UMTS Standard ကို
ကုိယ္စားျပဳတယ္လို႔ဆိုပါတယ္ .. ၁၉၉၈ မွာ Third Generation Partnership
Project (3GPP) မွေနျပီး 3G ျဖစ္လာေအာင္ အစျပဳခဲ႔တယ္လို႔ေျပာလို႔ရပါတယ္ ..
2. UMTS Services
UMTS ဆိုတာ Universal Mobile Telecommunication System လို႔
အရွည္အဓိပၼါယ္ရပါတယ္ .. Telephone, SMS, MMS, Data Services ေတြကို
တာ၀ါအျမင္႔ေတြ မလိုအပ္ပဲ Access Points တစ္ခုနဲ႔ တစ္ခုၾကားမွာ
ေပးပို႔ေပးႏိုင္သလို Satellite အသံုးျပဳျပီး ေက်းလက္ေဒသ ေတြအထိပါ အသံုး
ျပဳႏိုင္ပါတယ္ပါတယ္ .. Point-to-Point သို႔မဟုတ္ Point-to-Multipoint
ဆက္သြယ္ေရးစ နစ္ကို အသံုးျပဳထားပါတယ္ .. အသံုးျပဳထားတဲ႔ Bearer Services
ေတြမွာေတာ႔ ကြဲျပားျခားနားတဲ႔ QoS Parameters ေတြရွိပါတယ္ ..
ေအာက္ပါအတိုင္း အခ်က္အလက္လႊဲေျပာင္းမႈ အျမန္ႏႈန္းအဆင္႔ေတြကို ေတာ႔
ခြဲျခားထားပါတယ္ ..
ဒါ႔အျပင္ UMTS Network ပိုင္းမွာ ကြဲျပားျခားနားတဲ႔ QoS Class ေလးခုရွိပါတယ္ ..
UMTS Network တစ္ခုမွာ တကယ္အလုပ္လုပ္ေဆာင္ရတဲ႔ အပိုင္းသံုးခုရွိပါတယ္ ..
Core Network (CN), UMTS Terrestrial Radio Access Network (UTRAN) နဲ႔
User Equipment (UE) ဆိုတဲ႔ အပိုင္းေတြ ျဖစ္ပါတယ္ .. Core Network ရဲ႕ အဓိက
လုပ္ေဆာင္ခ်က္ေတြကေတာ႔ Switching, Routing နဲ႔ User Traffic
က်ပ္တည္းမႈေတြကို Transit ျပဳလုပ္ေပးဖို႕ျဖစ္ပါတယ္ .. CN မွာ Database
ေတြနဲ႔ Network တစ္ခု လံုးကို ထိန္းခ်ဳပ္မဲ႔ လုပ္ေဆာင္ခ်က္ေတြရွိေနရပါမယ္
... UMTS ရဲ႕ အေျခခံ Core Network ဆိုတာ GPRS ရဲ႕ GSM Network ကို
အေျခခံထားတာျဖစ္ပါတယ္ .. UTRAN ကေတာ႔ User Equipment (UE) ေတြ အတြက္ Air
Interface ကေန ဖုန္းနဲ႔ သတင္းအခ်က္အလက္ေတြကို လက္ခံေပးဖို႕အတြက္ လိုအပ္တဲ႔
Radio Frequency ေတြကို ထုတ္လႊင္႔ေပးပါတယ္ .. Radio ေတြထုတ္လႊင္႔ေပးတဲ႔
Base Station (BS) နဲ႕ ထိန္းခ်ဳပ္တဲ႔ စက္ကိရိယာ ေတြကိုေတာ႔ Radio Network
Controller (RNC) လို႕ေခၚဆိုပါတယ္ .. UMTS စနစ္ကို ဘယ္လို
ဧရိယာေတြခြဲျခားသတ္မွတ္ျပီး အလုပ္လုပ္ေဆာင္လဲဆိုတာ ကို ေအာက္မွာ ေဖာ္ျပေပး
ထားပါတယ္ ..
Core
Network မွာေတာ႔ Circuit Switched နဲ႔ Packet Switched
ဆိုျပီးႏွစ္ခုခြဲျခားထားပါတယ္ .. Circuit Switched အပိုင္းမွာေတာ႔ Mobile
Services Switching Centre (MSC), Visitor Location Register (VLR) နဲ႔
Gateway MSC တို႔ျဖစ္ပါတယ္ .. Packet Switched အပိုင္းမွာေတာ႔ Serving GPRS
Support Node (SGSN) နဲ႔ Gateway GPRS Support Node (GGSN) တုိ႔ျဖစ္ပါတယ္
.. တစ္ခ်ိဳ႕ Network Elements ေတြျဖစ္တဲ႔ EIR, HLR, VLR နဲ႔ AUC တို႕ကေတာ႔
Circuit Switched မွာေရာ Packet Switched မွာပါခြဲေ၀ သံုးစြဲၾကပါတယ္ ..
Asynchronous Transfer Mode (ATM) ကေနျပီး UMTS Core Transmission အတြက္
ခြဲျခားထားပါတယ္ .. ATM Adaptation Layer Type 2 (AAL2) ကေတာ႔ Circuit
Switched ဆက္သြယ္မႈေတြကို ထိန္းခ်ဳပ္ဖို႕နဲ႔ Packet Switched Connection
အတြက္ AAL5 ကေတာ႔ ေဒတာေတြကို လႊဲေျပာင္းႏိုင္ဖို႕အတြက္ျဖစ္ပါတယ္ .. ဒါေပမဲ႔
Core Network တည္ေဆာက္ပံုဟာ လုပ္ေဆာင္မႈ အသစ္ေတြနဲ႔ နည္းပညာ
အသစ္ေတြထပ္မံေပၚေပါက္လာရင္ေတာ႔ ေျပာင္းလဲႏိုင္ပါတယ္ ..
UMTS Wireless Network
Next Steps
Support
Documentation
The universal mobile telecommunication system (UMTS) is a 3G wireless
system that delivers high-bandwidth data and voice services to mobile
users. UMTS evolved from global systems for mobile communications (GSM).
UMTS has an air interface based on
W-CDMA
and an Internet protocol core network based on general-packet radio
service (GPRS). Figure 1 shows the infrastructure of a UMTS wireless
network.
Figure 1. UMTS Wireless Network Infrastructure
Voice and data transport is performed by the transport layer nodes, colored blue:
- Node B = base transceiver station
- RNC = radio network controller or basestation controller (BSC)
- SGSN = serving GPRS support node
- GGSN = gateway GPRS support node
- MGW = media gateway
|
The call control function is mainly performed by the call control layer nodes, colored yellow:
- CSCF = call state control function
- MGCF = Media Gateway Control Function
- HSS = home subscriber server
|
The air interface of node B is discussed on the
W-CDMA web page. The UMTS specifcations are discussed on the
3GPP web page.
Transport Layer Node Architecture
The transport layer node can be built on an asynchronous transfer
mode (ATM) switch, a packet switch, or an Internet protocol router. It
consists of an optional interface to call control layer nodes, host
processor, adjacent node interfaces, and switch fabric. Adjacent node
interfaces and switch fabric form the voice and datapath. Figure 2 shows
the architecture of a generic transport layer node.
Figure 2. Transport Layer Node Architecture
In
Figure 2, the two parts implemented in programmable logic are the call
control layer interface and the voice and datapath. The call control
layer interface is the interface logic to call control layer nodes such
as HSS, CSCF, and MGCF. The voice and datapath uses the Internet
protocol to transport packet voice and data within the UMTS wireless
network. Figure 3 shows a packet voice and datapath implementation.
Figure 3. Packet Voice and Datapath Functional Blocks
View Full Size
The main functions of the packet voice and datapath implementation shown in Figure 3:
- Physical layer processing—The physical layer
processing function processes SONET/SDH or T/E/J frame headers and
extracts point-to-point protocol (PPP) packets on the receiver side. On
the transmitter side, it places PPP packets into the frame payload and
adds the frame header.
- Higher layer processing—The higher layer processing
function performs parsing, framing, packet classification, and
modification. Encryption and compression processors are usually
supported and special processors are often used to accelerate the
process. The queuing and traffic manager function places packets on
different priority queues and drops packets according to the traffic
condition.
- Switching—The switch fabric performs switching and routing functions for voice and data. It also contains a queue manager.
- Control and management—The control and management function performs path control and collects data for management purposes.
Altera and AMPPSM IP Cores
The following intellectual property (IP) cores are available on the
IP MegaStore™ website:
- SONET/SDH Framers
- T/E Framer
- PPP Packet Processor
- POS-PHY Level2/3
- ATM Cell Processor
- UTOPIA Level2/3
- DES Encryption Core
- MD5, SHA-1 Hash Functions
- SDRAM Controller
The Altera Advantage
Using Altera
® products for 3G wireless networks offers many advantages.
Time to Market
The 3G wireless network market is very competitive, which makes time
to market particularly important. Using Altera FPGAs and IP cores saves
vital time, since you no longer have to wait for the turnaround time
necessary for ASIC development.
Flexibility
Because the migration to 3G requires multiple revisions and does not
occur in one step, ASICs are not a viable platform. Altera's FPGA
solution provides the flexibility to implement new proprietary features
and perform remote in-field upgrades.
Embedded DSP Blocks
Stratix® IV FPGA high-performance digital signal processing (DSP) blocks
consist of hardware multipliers as well as registers, adders,
subtractors, accumulators, and summation functions that are frequently
required in typical DSP algorithms. The DSP block supports completely
variable bit widths and various rounding and saturation modes to
efficiently meet the exact requirements of your application. The DSP
blocks are flexible, efficient, and optimized for a variety of DSP
applications requiring high data throughput, making DSP blocks ideal for
wireless communications.
Unprecedented System Bandwidth
Stratix IV high-performance devices now offer new levels of system bandwidth support, including the following:
Nios II Embedded Processor Solutions
The
Nios® II embedded processor
is based on the highly successful and revolutionary concept of
embedding soft embedded core RISC processors within FPGAs. The advanced
architectural features of Altera FPGAs and
HardCopy® ASICs, combined with the Nios II embedded processor, offer unparalleled processing power to meet the needs of high-bandwidth systems.
ARM Cortex-A9 MPCore Processor
Altera's SoC FPGAs integrate a dual-core
ARM® CortexTM-A9 MPCoreTM processor with 28-nm Cyclone
® V and Arria
®
V FPGAs. The Cortex-A9 processor provides unprecedented levels of
performance and power efficiency, making it an ideal solution for any
design requiring high performance in a low-power, cost-sensitive,
single-processor device.
Quartus II Software
When combined with Altera IP cores and the library of parameterized modules (LPM),
Quartus® II software
makes the design process even faster and easier. LPM functions can be
plugged into a design directly, and most can be accessed through the
MegaWizard
® Plug-In Manager and customized with just a few clicks.
Cost-Reduction Path
If you implement wireless applications using Altera high-density
FPGAs, you may need a low-risk cost-reduction path for high-volume
production. You can migrate your designs from an FPGA to a
HardCopy ASIC.
For example, time-sensitive wireless applications can be prototyped and
ramped up into production using Altera FPGAs, and when the design is
ready for high-volume production, the design can be migrated to HardCopy
ASICs, thus reducing overall costs.
Related Links
0 - ဦး မှတ်ချက်ပေးထားပါသည်
Post a Comment